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Abstract

Automatic synthesis of human body motion is becoming an important com-

ponent of digital media and communications. Currently, this is still a task requir-

ing specialised software and a laborious process. Using audio speech as the driving

factor to produce motion data is a desirable option due to the flexibility and avail-

ability of speech data. This project focuses on devising a data-driven system using

state-of-the-art Deep Learning for mapping audio speech to head pose, made up

of a translational and a rotational component.

Data-driven systems require substantial amounts of high-quality curated

and pre-processed data to be able to facilitate learning. Thus, a dataset from

data in the wild was constructed, by initially scraping online footage of a single

source actor, then annotating and analysing it with an off-the-shelf facial analysis

tool.

Videos of the final results can be seen at the project website1.

1http://nick-nikolov.com/masters-project
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Chapter 1

Introduction

1.1 Overview

As our lives become ever more digitised, designers and artists look for new,

easier ways to humanise our digital environments. This usually requires mimick-

ing different aspects of human behaviour in the context of social communication,

both verbal and non-verbal. With the continuous and steady increase in internet

connection bandwidth and speeds as well as the rapidly improving quality of dig-

ital displays, media consumption habits have shifted primarily to video or other

highly visual formats, such as digital avatars, facial augmentation (also called face

filters, as seen in Figure 1.1), augmented reality and so on. This shift also increas-

ingly puts the end-user in a creative and expressive role, blending the creation and

consumption aspect of digital media.

Given the importance of the human head and face for non-verbal commu-

nication, facial technology is a focal point in this current media landscape. Facial

animation technology at top-end production-grade range has seen significant ad-
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Figure 1.1: “Filtered Digital Self-Representation”, term borrowed from Herring et al. [1]

vances. Most recently, acclaimed Hollywood director Martin Scorsese pushed the

limits of computer-generated graphics (CGI) to augment the faces of his main

cast of actors and make them decades younger [2]. Similarly, it is becoming more

common to leverage CGI to create photo-realistic faces of deceased actors [3].

British company Cubic Motion develop technology some of the most sophisticated

motion-capture based digital facial animation systems in the industry, closing the

gap between the realism of human and digital actor performances [4].

Digital tools that are able to create realistic human-like visuals and an-

imation are today largely still highly-specialised, require labour-intensive work,

capturing actors with specialised hardware and generally mostly accessible to pro-

fessionals and teams with significant budgets. In order to allow artists, designers,

indie or amateurs creators to achieve comparable work and introduce synthetic,

humanoid and personalised media, new tools and techniques are required. In a re-

2



cent review of Apple’s “Animoji” face-driven avatar animation system, [1] coin the

term Filtered Digital Self-Representation in which they try to capture a broader

social phenomenon—people with limited technical skills are able to modify and

extend their online self-presentation.

New machine learning based techniques have emerged over the last years to

offer alternatives to high-end specialised software. In wider culture, some of them

have become known as Deepfakes (deep stands for the use of Deep Learning, a sub-

field of Machine Learning which will be described in Chapter 3). Deepfakes refer

to images synthesised with certain types of neural networks (typically Autoencon-

ders or Generative Adversarial Networks, Figure 1.2 shows an example) that can

learn to generate an input face and replace another in a target video. While the

literature is quickly evolving, examples of creative uses are still somewhat rare but

emerging [5]. Computer Vision startup Synthesia specialise in applying these ad-

vancements in technology to produce high-fidelity synthesised facial reenactment

[6]. Early explorative work shows automated news [7] and weather [8] reports.

The majority of the aforementioned examples are centred around visual

data—motion capture, face-to-face reenactment, or more sophisticated physical

models targeted for high-end industry professionals. A related topic that has

received less attention is using speech audio as the driving factor. The literature

on sound-based body and face animation is comparatively less extensive however it

can provide many benefits both from a theoretical understanding, as human speech

and the corresponding motion are directly connected, as well from a practical

standpoint in scenarios where audio is the only data source or it is preferable as

the controlling interface.

3



Figure 1.2: “Deep fakes” example — driving face images with video using Deep Learning [9]

1.2 Motivation

Improving our understanding of the relationship between body and facial

motion, and the corresponding speech signal will provide valuable insight for the

analysis of non-verbal communication. Further practical motivation is provided

by the fact that human speech is generally readily available, easily captured in

a digital format, requires less bandwidth compared to visual data, and arguably

harder to degrade by environmental conditions. Indeed, driving animation from

audio yields a solution to problems of missing, ambiguous or noisy visual data

(occlusion of actor, bad lighting, etc). Further, it opens many creative possibili-

ties such as creating on-demand animation content for digital personal assistants,

4



digital help desks, games, education material and so on.

Assuming the speech signal contains features that map to human body

motion and pose, presented with sufficient training data and an appropriate ma-

chine learning model, a mapping can be learned. Once a data-driven approach

is chosen, analysing the possible source datasets is itself an interesting problem.

While vast amounts of raw footage is generally freely available on the internet,

it is a considerably difficult task to curate and pre-process it in a way that it

becomes useful for a learning task. Further, movement, gestures and speaking

styles vary significantly across individuals and cultures, which makes it very hard

to create generically useful models. In that sense, there will be need for tools

and techniques for end-users, artists and researchers to be able to extend or cre-

ate their own purpose-specific datasets, by recording themselves or collecting and

processing “in the wild” footage.

1.3 Aims

An overview was given as to why driving human body and facial movements

with an audio speech signal is a worthwhile research topic. This project explores

the state-of-the-art data-driven audio-based methods to generate human body

animation and pose, and implements an extension to a specific Deep Learning

architecture to learn to control human head pose from audio. Moreover, the

creation of a dataset by scraping online footage and processing it with an off-the-

shelf facial analysis tool is investigated.

Chapter 2 will review the current state-of-the-art in the research literature

and a starting point for the implementation of the project. Chapter 3 will describe

5



the theoretical prerequisites in more detail. Chapter 4 lays out the implementation

of the proposed system. Chapter 5 reviews the different experiments that were

run and evaluates the results qualitatively and quantitatively. Lastly, Chapter 6

forms the conclusion and describes several directions for future work.

6



Chapter 2

Related Work

2.1 Overview

This project takes a broader look at a few different strands in the research

literature unified by the common theme of generating human body pose and mo-

tion from audio. This limits the depth of the review to current state-of-the-art

papers, especially those based on data-driven Deep Learning methods.

The human body can broken down and categorised into gestures (i.e. the

motion of the limbs while talking), head pose and lip motion. Each of this is its

own research topic and this categorisation clearly simplifies many aspects of the

visual nature of human speech (e.g. gaze direction, brow movement and so forth).

Chapter 6 expands on this and proposes ideas and directions for future work.

Some methods however do not explicitly differentiate semantically between parts

of the human body (particularly those based on Generative Adversarial Networks

(GANs), which will be reviewed below).

7



Another approach to analyse the literature is to consider the representation

of the data and the output. Again, three common categories can be traced down—

treating the data simply as 3D vertices, using coefficients for parametric models,

or using GANs to create models that learn to draw 2D images of human bodies

directly. It can be useful to think about those two categorisation principles as the

axes of a 2D matrix as most papers reviewed here can be placed inside.

Table 2.1: Audio-driven human motion literature categorisation.

Gestures Head Pose Lip Motion

3D vertices [10], [11], [12],

[13]

[11] [14]

Parametric Model [15] [16], [17]

GAN [15], [18], [9],

[19]

[18], [9]

Lastly, the papers that specifically form the basis of the implementation of

this project (Chapter 4) are looked into more detail at the end.

2.2 Rule-based systems vs Deep Learning

Classically, human pose and motion was a problem of interest mainly in

the fields of Computer Graphics and Animation, and Robotics ([20], [21], [22]).

Animating the human body is a painstakingly detailed process that requires a

considerable amount of manual labour to achieve human-like realism. Rule-based

systems similarly are very costly to create and are creatively bounded.

8



A clear alternative to escape the rigid nature of rules or laborious process

of manual animation is to leverage the fact that human body motion examples

exist in vast amounts and new ones can be captured by using MoCap technologies

or generated using computer vision by extracting data from “in the wild” footage.

In order to make those data useful, recent advancements in the field of Machine

Learning are considered.

2.3 Deep Learning

A relatively recent contribution to the field of Computer Graphics is the

newly rejuvenated field of Machine Learning, specifically the family of neural net-

work architectures referred to as deep neural networks, or more commonly Deep

Learning. Conceptually, neural networks span back to the origins of modern com-

puters [23] [24]. At a glance, neural networks are biologically-inspired directed,

weighted graphs. They can learn by adjusting their weights based on observational

data.

The big spike in interest from the research community originated in the

early 2010s when several breakthroughs occurred in the space of image recognition.

In the 2012 the work Alex Krizchevsky [25], a Convolutional Neural Network

(CNN) called AlexNet, achieved an error 15.3% in the object recognition challenge,

more than 10.8 percentage lower than the runner up. CNNs are a type of neural

network architecture that uses regularisation based on the typical patterns of

image and video data, a simple example is shown in Figure 2.1. Krizchevsky’s

doctoral advisor was Geoffrey Hinton, who together with Yoshua Bengio and Yann

LeCun would win the Turing Award in 2019 for their work on Deep Learning.

9



Figure 2.1: Deep Learning Image Classifier [26]

Since 2012 there has been an influx of interest, from both research and

industry, and it would be impossible to touch upon all important aspects of the

field. Still, several core components can be attributed to its success. Internally,

the backbone of virtually all neural network architectures is the class of algorithms

called backpropagation. Backpropagation computes the loss function of the net-

work, i.e. how far off the output is from the desired target. Weights in the network

are then adjusted based on the mathematical gradient.

Externally, the advent of modern graphical processing units (GPUs) turned

out to be a particularly excellent fit for Deep Learning due to the common mas-

sively parallel nature of modern computer graphics and neural nets—they both

10



rely on a substantial amount of simple linear algebra operations. In real-time

graphics, this usually means computing matrix operations that yield vertex coor-

dinates, while neural nets can be seen to a large extend as matrix multiplication

graphs. Further, the amount of raw data collected and available today has played

a crucial role in the success of Deep Learning. The most impressive models largely

depend on the size and quality of the datasets.

To tie things back to 3D graphics and human body animations, one can

conceptually view Deep Learning as an universal non-linear function approxima-

tor. These non-linear models can replace, outperform and generalise better than

classical statistical methods. This project specifically looks at modelling human

body animations using speech as a non-linear learning task that can leverage a

dataset made up of animated 3D models and speech data pairs.

2.3.1 GANs

One of the main contributions of Deep Learning to the research of synthetic

imagery is the idea of Generative Adversarial Networks (GAN). As initially pro-

posed by Goodfellow et al. [27] in 2014, the technique is based on two contesting

neural networks—a generative and a discriminative network—in a game theoretic

setting. The role of the former is try and generate fake samples from a dataset,

while the latter tries to correctly detect counterfeits from real samples. As both

networks are differentiable (i.e. can be trained using backpropagation), the gener-

ator gets better at producing synthetic data while the discriminator gets better at

catching fakes.

Since their initial emergence GANs have found number of uses as genera-

11



tive models—synthesising voices, music and text. However, they have primarily

received attention for their effectiveness in producing synthetic imagery. Image

generation as a sub-problem in itself has generated plenty of interest from the

research community and some of the techniques have found themselves in com-

mercial applications or captured the attention of the media. Most notably, Style

Transfer (originally proposed by Gatys et al. [28])—a technique to apply the artis-

tic style of image to another—and various work in the family of photo-realistic

human face generation. GANs have also been used to create Deepfakes.

This review will further narrow down on the state-of-the-art literature re-

lated to synthetic face generation and animation using GANs. Static face gener-

ation has seen steady improvements in fidelity and the state-of-the-art [29] has

achieved realism to the extend that synthesised artefacts are nearly undetectable

to the human eye [30].

Further GAN extensions have been made to translate input imagery to

an output target image. For example the work of Isola et al. [31] on conditional

adversarial networks has provided for a practical way to influence (or condition)

the output of a GAN opening possibilities for puppetry in the context of face

generation. A conditional GAN, or cGAN, as first proposed by Mirza et al. [32]

shows that both the generator and discriminator can be conditioned on extra

information, such as a label existing in the dataset. In the original image-to-

image formulation, the dataset of input and output domain needs to be paired.

This limits a lot of the creative uses as large enough paired visual datasets are

hard to find or construct.

Zhu et al. [33], propose the CycleGan architecture to allow for unpaired

datasets. Since an unpaired domain mapping is heavily under-constrained, Cy-

12



cleGan trains to separate generator-discriminator pairs, where the image is being

transformed to the target domain and back. The loss is then calculated by how

much the input deviates after the two transformations (i.e. how much it deformed

after a full round trip).

2.4 3D Morphable Models

One way to tackle the seemingly infinite complexity of a human face is

approaching it from a statistical perspective and assuming that some facial con-

figurations are more likely than others, and some completely unlikely. If a model

is able to constrain facial deformations based on statistical likelihood, correspon-

dence and animation become tractable problems. In a seminal paper Blanz and

Vetter [34] proposed such a method–now known as a 3D Morphable Face Models

(3DMM).

More broadly, 3DMMs exist in a family of facial expression linear models

that are commonly referred to as blendshape models. This project focuses on

the statistical nature of 3DMM but other methods exists, such as parametric

models, models driven by motion capture and others. In Practice and Theory

of Blendshape Facial Models [35], Lewis et al. review the history and common

variations.

By preparing a dataset of 3D faces of similar topology and with full corre-

spondence, this method constructs a generative model for face shape and appear-

ance. Linear combinations of these models produce morphologically realistic faces

(called morphs). 3DMMs can separate and distinguish the shape, appearance and

expression of a face as distinct models.

13



In the original work, Principal Component Analysis (PCA) is used to de-

rive a statistical shape model. PCA performs a basis transformation to a new

coordinate system which axes are ordered by the variation in the data. Since

then, the literature has proposed other learning techniques. Shape models can be

further separated in global and local models. Local models improves modelling

of important localised areas that require more detailed control, thus yielding in

higher fidelity results.

Expression models concern themselves with capturing the expression varia-

tion of a subject, where expression is distinct from the identity. When decoupled

and modelled separately, expressions can be transferred between subjects and

interpreted as blendshape coefficients. This plays an important role in facial reen-

actment as described later. Both facial shape and expression models have been

traditionally linear but later work, such as FLAME [36], has proposed non-linear

control.

Lastly, appearance models which deal with the albedo and illumination

data of a face are described. Similarly to shape and expression models, appearance

models can both linear and non-linear and can be derived statistically. As is

common in Computer Graphics, appearance information is represented as per-

vertex or in a UV texture.

3D Morphable Models is active area of research and this project will aim

to explore state-of-the-art solutions. There are many aspects that are out of scope

for this project, such as data capture, and won’t be addressed here. Please refer

to 3D Morphable Face Models - Past, Present and Future [37] for a more thorough

review.
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2.5 Audio to human body motion

With an overview of the common methodology, several papers considered

state-of-the-art as of this writing will be reviewed.

The research literature offers several directions in the problem of mapping

audio to human body motion. One sub-problem is generating realistic lip motion.

Cudeiro et al. [VOCA2019] propose VOCA, a Deep Learning-based pipeline (Fig-

ure 2.2) that, firstly uses a Deep Learning model to extract speech features, then

another network that maps those features to the coefficients of a 3DMM.

Figure 2.2: VOCA pipeline [16]

While most speech-to-motion methods use more traditional speech process-

ing techniques like MFCCs, VOCA leverages a pre-trained model in the face of

DeepSpeech [38]. DeepSpeech is originally a Recurrent Neural Network-based

architecture, however in practice the Long-Short Term Memory (LSTM) neural

network architecture is commonly used. It learns speech features from audio data,

in this instance using 26 MFCC features instead of the raw spectrogram. The au-
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thors claim this allows their model to generalise well over different audio sources

(i.e. different persons), as well as being robust to noise, recording artefacts, differ-

ent languages and accents.

The VOCA models does not work on raw 3D vertices of the lips, it rep-

resents the face with 3DMM, and in this instance the FLAME [36] model is the

chosen 3DMM implementation.

In a recent paper Yi et al. [15] propose a DNN pipeline that directly pro-

duces a talking face video from an audio speech signal of an arbitrary source

person.

Their pipeline can be grouped in two stages (see Figure 2.3). In the first

stage, a mapping from audio speech to facial expression and head pose is learned.

Then, an audio input provided, a 3D face can be reconstructed and the mapping

fine tuned to learn a personalised talking behaviour from the input video. In

the second stage the 3D face is animated and rendered using the texture and

lighting information generated from the input video. The graphics engine can now

render frames using his information, which acts merely as a mediator for the final

rendering step. Indeed, to achieve photo-realistic results, a memory-augmented

GAN is trained to map the 3D faces to refined synthesised video frames of a

personalised talking face.

Karras et al. [14] show that different neural network types are can also learn

to map audio data to animations, though their work is more involved in terms of

processing audio. Filtering and gain normalisation techniques are employed to

achieve consistent results.

Alternatively, Taylor et al. [39] show a direct audio approach can be avoided
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Figure 2.3: Yi et al. pipeline [15]

by transcribing speech to phonemes and training on the phoneme labels. Audio

and video data from training footage are paired together. The mouth region is

tracked and parametrised using shape models which results in a label for a given

frame. The corresponding audio pair is the transcribed phoneme.

Suwajanakorn et al. [19] propose another RNN-based approach in which

mouth textures are generated from audio later to be attached to a face in the final

composite. The main paper this project will focus on is Thies et al. [17]. Similarly,

a DeepSpeech architecture has been used to learn facial expression embeddings.

Lastly, three recent papers ([13], [12], [10]) proposing Deep Learning-based

solutions to predict human gestures from audio speech will be reviewed. Specifi-

cally, the latest work by Kucherenko et al. [10] forms the basis of implementation

of this project which will be described in Chapter 4.

In [13] a direct pipeline that maps speech audio to human gestures is pro-

posed (see Figure 2.4). The audio is extracted into Mel-Frequency Cepstral Coef-

ficients (MFCC) which provide for simpler representation of the signal motivated

by the human auditory system, making the input more conducive to learning the

speech-to-gesture mapping. The neural architecture is based on the Bi-Directional
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l Long Short-Term Memory (LSMT), a particular extension to the Recurrent Neu-

ral Network (RNN) that is able to learn sequences with difficult relationships

through time (i.e. requiring long-term memory). The gestures are represented as

3D joint positions of the entire body for any point in time, meaning the network

the output of the network is also 3D position predictions. The authors use a

data set consisting of speech and gesture pairs from an interview-style setting. To

achieve further realism, the temporal discontinuities of the output are filtered with

a smoothing function.

Figure 2.4: Hasegawa et al. pipeline [13]

Kucherenko et al. [10] propose a meaningful extension this architecture by

including an additional step involving representation learning for the motion data

(Figure 2.5). The proposed strategy is using a Denoising Autoencoder (DAE).

That way, a lower dimensional representation of the input data (3D positions of

joints) can be learned by decoding it into a latent space and then decoding it by

trying to reconstruct the original input as close as possible. The DAE is forced to

learn a compact embedding of the dataset. This embedding can be leveraged in

the speech-to-gesture mapping. As the network learns to map speech to the latent

space of the motion, the final step is to deploy the decoder and output motion in

the original space (i.e. 3D positions of all joints).

Kucherenko et al. continue their work in a separate paper [10]. A new
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Figure 2.5: Kucherentko et al. pipeline [12]

neural architecture is proposed, using the Gated Recurrent Unit (GRU), a slightly

simpler sibling of the LSTM. The authors explored some alternatives to MFCCs,

by training on raw spectrograms and prosodic features separately. Prosodic feature

entail specific signifying qualities that exist in human speech. In this instance, the

energy of the speech and the time derivative of the energy signal, as well as the

logarithm of the F0 pitch contour and its time derivative. The pitch contains

information about the speech intonation.

In summary, the literature reviewed in this chapter tends to have a few

themes in common. Human motion consists of a very intricate parameter space,

whatever representation is chosen. To avoid laborious manual methods of generat-

ing realistic animations or rigid and constrained rule-based methods, a data-driven

approach is desired. However, a naive approach will not be able to model the com-

plexity of the data. To this end, deep neural networks are employed to learn a

representation of recorded human motion and map it to a corresponding input

signal, in this case audio speech.

This should give sufficient motivation for the choice of methodology. The

following Chapter will provide a more detailed theoretical overview of the com-

monly used techniques in the reviewed papers.
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Chapter 3

Preliminaries

This chapter will introduce all underlying concepts before describing the

implementation in Chapter 4.

3.1 Head Pose

This project involves finding test subjects “in the wild” and generating a

dataset of head pose and speech audio pairs using video footage. To that end,

an off-the-shelf Facial Behaviour Analysis toolkit (specifically OpenFace 2.0 [40])

was used. OpenFace provides an automatic modern face analysis pipeline (see

Figure 3.1) consisting of facial landmark location, head pose, eye gaze and facial

expressions. This project focuses on the head pose component which compared to

other systems is generated at a reasonable quality and uses less computationally

demanding. See [40] for a full comparison.

OpenFace extracts the head pose as two components, translation and ori-
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Figure 3.1: OpenFace 2.0 analysis pipeline [40]}

entation, from the 3D representation of the facial landmarks. Those are being

projected using an orthographic camera model which allows for an accurate esti-

mate of the head pose by solving an n point in perspective problem. In Figure

3.2, an example can be seen of the head pose estimate given by OpenFace, on the

right superimposed on top of the original footage, and on the left using the head

pose information to translate and rotate a 3D mesh.

Figure 3.2: Head pose on a custom dataset
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3.2 Deep Neural Networks

Chapter 1 has given some motivation and context as to why Deep Neural

Networks (DNN) are appropriate to tackle the problem of modelling human motion

data. Chapter 2 reviewed several key papers that has shown successful results in

deploying DNNs and related techniques. The section will introduce the concepts

related to DNNs for the proposed method in the next chapter.

DNNs extend Feed-Forward Neural Networks, also called Multi-Layer Per-

ceptrons (MLPs) introduced by Rosenblatt [24]. A neural network, while referring

to the human brain in name and being originally inspired by neurons, is simply

a function f that maps an input x to an output y and learns specific parameters,

most commonly a bias b parameter and a set of weights b. Importantly, neural

networks usually incorporate some kind of non-linear activation function, say the

sigmoid function σ, that allow the function to model non-linear manifolds.

f(x) = σ(w · x + b)) (3.1)

Both Deep Learning, DNNs and related nomenclature refer to the concept

of neural networks with many hidden layers and all accompanying mathematical

and computational techniques that allow for deep architectures to learn parameters

over big datasets.

3.2.1 Autoencoder

Encoder-decoder architectures, loosely, are DNN architectures in which an

encoder function maps an input into a latent space, and then a decoder func-
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tion maps it once again to a desired output space. Autoencoders are a type of

encoder-decoder network that aims to reconstruct the input as close as possible

given a metric. Usually, the information passes through a lower dimensions space

bottleneck before getting reconstructed back. In a sense, Autoencoders perform

lossy compression, where the neural network tries to learn features in the data

that allow for the most optimal compression. Another way to think about, Au-

toencoders perform a similar role to Principal Component Analysis (PCA), where

the Autoencoder learns to fit a non-linear manifold compared to the linear fitting

PCA performs. A simple example of this is show in Figure 3.3.

Figure 3.3: Figure from [41]
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While Autoencoders do not outperform traditional compression algorithms,

they tend to have interesting applications as applied to noise reduction and di-

mensionality reduction, the latter being mostly used for data visualisation pur-

poses of highly dimensional data. From the perspective of the problem of human

motion, some Autoencoder architectures present interesting qualities of learning

lower-dimension representation of highly-dimensional data, usually referred to as

Representation Learning (for example [12]).

Figure 3.4: Simplified Autoencoder diagram [42]

Vincent et al. [43] propose an architecture (Figure 3.5) named a Denoising

Autoencoder (DAE) that achieves a good representation by defining a denoising

training and reconstruction criterion and corrupting the input data. While the goal

is not denoising specifically, the task of denoising tends to force the Autoencoder

to learn a useful structure in the distribution of the data. Chapter 4 will show

that incidentally, this offers a double benefit as compared to high-fidelity studio-

captured datasets, “in the wild” tends to be noisy anyway. Even though artificially

corrupting the input data is generally done when using DAEs, the dataset for this

project benefits from the denoising quality at the same time a representation is

learned.

As per [43], to train a DAE the initial input x is corrupted into x̄ by means

of stochastic mapping
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x̄ ≈ qD(x̄|x) (3.2)

Next, the corrupted input x̄ is mapped to a hidden representation with the

same process as a traditional Autoencoder

h = fθ(x̄ + b) (3.3)

Finally, the model reconstructs the input data from the hidden representa-

tion

z = gθ′(h) (3.4)

θ and θ′ are parameters of the models that are learned by minimising the

average reconstruction error over the training data. The corruption strategy can

be of any kind, though for motion data, Gaussian noise is generally used.

Figure 3.5: Denoising Autoencoder [43]. x is an example that is stochastically corrupted via qD into
x̂, further mapped to y via the encoder fθ and finally reconstructed back via the decoder gθ′ where
Lh(x, z) is the loss function.
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3.2.2 Learning Sequences

While Representation Learning is helpful to provide for a compact embed-

ding of human motion data, this project is concerned with trying to generate

realistic predictions from speech signals. This means that a neural network ar-

chitecture needs to be chosen that lends itself well to learning and predicting

sequential data. Human motions tend to have a specific range of motion and can

move in a limited range of velocity and acceleration, so it is important for the

network to be able to learn these properties well.

The family of neural networks that has shown to be able to successfully

learn sequences is called Recurrent Neural Networks, or RNNs for short. RNNs

expand on MLPs by introducing loops in the architecture and allowing for infor-

mation persistence.

Consider a sequence of values x1, ..., xn, and time step t. For each cycle the

network looks at xt and outputs the result into a so-called hidden state ht.

Elman [44], considered one of the simplest RNN architectures, defines the

hidden state ht and output yt as such

ht = σh(Whxt + Uhht−1 + bh) (3.5)

yt = σy(Wyht + bh) (3.6)

with W and U being weight matrices.

This allows for unrolling the graph (Figure 3.6) for any number of time

steps, allowing learning of arbitrary length of sequences and producing sequential
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predictions that the network has not seen. In practice however, classical RNNs

are very hard to train due to their susceptibility to a vanishing gradient [45]—a

common numerical problem in very deep networks in which the calculated gradient

in a given training step is too small due (i.e. vanishes) to the multiplication of too

many small weight matrices. When vanishing gradients appear, the network’s

weights do not change either and learning fails to occur.

Figure 3.6: RNN unrolled [26]

A successor to RNNs, the Long Short Term Memory (LSTM), first pro-

posed by Hochreiter and Schmidhuber [46], address this problems by extending

the architecture with a Cell C that aims to model the relationship of the current

time step with the past. The Cell in turn is controlled by three gates

• ft - usually called the forget gate. The network uses it to decide which

information should be discarded (weighted from 0 to 1) from the cell state.

The decision is based on the previous hidden state and the input.

• it - usually called the input gate. Decides which values will be updates by

looking at the previous hidden state and the input.

• ot - this gate is the last step, filters out the output based on the already

calculated current cell state

Lastly, ĉ consists of the new values the network is going to add to the cell
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state. Combined with the input gate which decides how much of those will be

used when constructing ct.

ft = σ(Wfxt + Ufht−1 + bf ) (3.7)

it = σ(Wixt + Ufht−1 + bi) (3.8)

Ĉt = tanh(Wcxt + Ucht−1 + bc) (3.9)

Ct = it × Ĉ + ft + Ct−1 (3.10)

0t = σ(Woxt + Uoht−1 + bo) (3.11)

ht = ot × tanh(Ct) (3.12)

Another variation of the LSTM architecture is the Gated Recurrent Unit

(GRU) proposed by Cho et al [47] which similarly uses a gating mechanism. GRUs

are simpler than LSTMs since they have fewer parameters, however in some sce-

narios show comparable performance.

Canonically, GRUs can be defined as

zt = σg(Wzxt + Uzht−1 + bz) (3.13)

rt = σg(Wrxw + Uzht−1 + bk) (3.14)

ĥt = ϕh(Whxt + Uh(rt ⊙ ht−1) + bk) (3.15)

ht = (1 − zt) ⊙ ht−1 + zt ⊙ ĥt (3.16)

where
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• xt - input vector

• ht - output vector

• ĥt - candidate activation vector

• zt - update gate vector

• rt - reset gate vector

• W, U, b - parameters

and the activations functions

• σg - sigmoid

• ϕh - hyperbolic tangent

though other variations exist.

3.3 Mel Frequency Cepstral Coefficients

Mel Frequency Cepstral (MFC) is a representation of the short-term power

spectrum of the sound that is widely used in the fields of sound processing, auto-

matic speech recognition, music information retrieval and so on. Mel Frequency

Cepstral Coefficients (MFCC) are the coefficients that the MFC is made of. In-

troduced by Davis and Mermelstein [48], they superseded Linear Prediction Coef-

ficients (LPC) and Linear Prediction Cepstral Coefficients (LPCC) as the state-

of-the-art technique for representing speech features. Only recently have Deep

Learning-based techniques made progress in presenting compelling alternatives

[38]. All of these methods are motivated by the human auditory and speech sys-

tems.
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Specifically for MFCCs, the periodogram (power spectrum) that is calcu-

lated for each frame by taking the absolute Discreet Fourier Transform (DFT) is

based on frequency analyses done on the human cochlea.

At a glance, the algorithm to extract MFCCs from an audio signal consists

of the following steps

• frame the signal into frames, usually 25ms

• for each frame, the magnitude of the DFT is calculated

• the mel filter bank is convolved with the periodogram

• the logarithm of the filter bank energies is taken

• apply the Discreet Cosine Transform (DCT) to the resulting logarithm

• keep a number of coefficients, discard the rest

The parameters used for calculating the MFCCs are described in Chapter

5.
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Chapter 4

Audio-To-Headpose Architecture

4.1 Overview

This chapter will provide a detailed technical overview of the proposed

method and its implementation. The pipeline and architecture of the network is

largely an extension of [10] with the exception of the initial step of collecting data

in the wild and constructing a dataset for head pose.

The DAE, which will be referred to as the HeadposeEncoder and Head-

poseDecoder networks for its individual components, and the GRU-based architec-

ture, which will be referred to as the SpeechToDecoded network, were implemented

using TensorFlow [49]. TensorFlow is an open-source Deep Learning software pack-

age based on data-flow, differentiable programming, maintained by Google.

Figure 4.1 summarises the complete system, consisting of two main compo-

nents, the training and the inference. The training itself consists of three different

parts. Firstly, after dataset is processed and prepared, the DAE is trained on
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the head pose data, aiming to reconstruct the data as close as possible using

an embedded space as the bottleneck. In the second step the HeadposeEncoder

component of the DAE is used to encode the complete dataset. Finally, in the

third step the encoded head pose data is paired with the audio speech signal and

fed to the SpeechToEncoded network, aiming to learn a relationship between the

pairings. In the second phase, the pipeline is ready to be used for inference. To

do that, the input audio signal is transformed into an MFCC vector, fed to the

SpeechToEncoded, and lastly decoded using the HeadposeEncoder component of

the DAE, which results in the desired head pose motion data.

4.2 Constructing a dataset for speech and head pose

The main difference between rule-based and machine learning systems is

that the latter usually require a substantial amount of high-quality data. While

it is common for most body motion research papers to record or use off-the-shelf

production-grade studio captured datasets (i.e. using motion capture), estimating

the head pose simplifies the problem somewhat as it can be represented by only

two components, translation and rotation. Further, state-of-the-art face tracking

systems can estimate head pose from video to a reasonably accurate degree, at

least to the extend of using it for a learning task.

Given the vast amounts of video material online, a pipeline that auto-

matically scrapes the Obama White House archive website and downloads his

weekly presidential addresses1 for a given date range was scripted. Once a raw

video archive was collected, the videos were processed and cleaned by hand and
1https://obamawhitehouse.archives.gov/briefing-room/weekly-address
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Figure 4.1: Audio-To-Headpose Architecture. On the top, the training process is visualised in three
different steps and on the bottom the inference pipeline

timestamps of all sections in the video with a static camera angle and a visible

front-facing talking head were extracted. Figure 4.2 shows some examples of the

general content of the videos. These extracted video speech chunks could now be

passed through OpenFace which generated the head pose translation and rotation

components for each video frame. Lastly, by extracting the audio from the video

snippets a complete audio-to-head pose dataset was constructed for one person

(Obama). Due to different camera angles for each snippet, the mean translation

for each example was calculated and subtracted in order to centre all the data.
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Figure 4.2: Example snapshots from different examples in the dataset

The next step was to process the dataset with OpenFace. For ease of

use, the files were transformed onto a Google Colab instance, which executed

the necessary scripts. As a result, for each video a CSV text file was generated

containing per-frame facial information, an example is shown in Figure 4.3.

To train a machine learning model, the data usually has to be organised

into three separate groups—training, validation and testing. The split used for

producing the final results contains overall 45 examples, 38 used for training with

overall length 33 minutes and 44 seconds. For validation, 4 examples were used 6

minutes and 33 seconds in length. For validation, 3 examples were used 2 minutes

and 51 seconds in length.
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Figure 4.3: Data from OpenFace

4.3 Pre-processing step

Now that the raw dataset is ready to use, a few pre-processing steps are

required to prepare the data before feeding it to the Autoencoder and the Speech-

ToDecoded network.

4.3.1 Audio Input data

The input audio is stored in a lossless format at 48000 Hz and 16 bits per

sample. The motivation for using MFCCs was described in the previous chapter.
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To calculate the MFCCs on the prepared dataset several steps are undertaken.

1. All input audio is transformed from stereo to mono by taking a simple aver-

age of the left and right channel.

2. The moving analysis window is set to 0.01 seconds which results in 100

frames per second.

3. We average every 5 frames to drop the FPS to 20.

4.3.2 Label data

The label data (i.e. the head pose) is stored originally as 30 fps which

is what OpenFace produces. The data is read and downsampled to 20 FPS by

dropping every third element.

Since the loss functions of the Autoencoder is based on distance, in order

to capture the rotation information all all axes (i.e. pitch, yaw, roll), the rotation

is encoded into three unit vectors. The unit vectors are based on OpenCVs coor-

dinate system since this is what OpenFace uses. Pitch, yaw and roll respectively

represent the rotation in radians around the x, y and z axes.

If a matrix of unit vectors x, y and x is constructed for

x =


−1

0

0

 , y =


0

−1

0

 , z =


0

0

1

 (4.1)

then we have
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M̂ =


−1 0 0

0 −1 0

0 0 1

 (4.2)

The rotation vectors from OpenFace thus can be constructed into a rotation

matrix. The rotation matrices around each axis in 3D is defined as such:

Rx(α) =


1 0 0

0 cos α − sin α

0 sin α cos α

 (4.3)

Ry(β) =


cos β 0 sin β

0 1 0

− sin β 0 cos β

 (4.4)

Rz(γ) =


cos γ − sin γ 0

sin γ cos γ 0

0 0 1

 (4.5)

Multiplying the above three will result in a rotation matrix for all axes.

R = Rx(α)Ry(β)Rz(γ) =
cos α cos β cos α sin β sin γ − sin α cos γ cos α sin β cos γ + sin α sin γ

sin α cos β sin α sin β sin γ + cos α cos γ sin α sin β cos γ − cos α sin γ

− sin β cos β sin γ cos β cos γ

 (4.6)
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Finally, the unit vector matrix can be multiplied by R and yield the rotation

representation M that will be passed to the Autoencoder.

Mcenter = ˆMcenterR (4.7)

After running experiments, it was necessary to add the translation compo-

nent for each frame to the respective rotation to improve prediction results. Thus

the final form becomes

M = Mcenter + T (4.8)

The translation component can be passed as is.

In addition to the translation and rotation, the velocities of those are cal-

culated and included in the input vector of the Autoencoder. This is done simply

by taking the positional difference between each consecutive frame. For example,

to calculate the velocity between the 2nd and 3rd frame for the translation along

the x axis

V2 = Tx2 − Tx1 (4.9)

The first and last velocities are assumed to be 0. This is done for the

translation vector and the three rotation unit vectors.

In conclusion, the input vector for the Autoencoder consists of

[T, M, Vt, Vr] (4.10)
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with a shape N × 24. Specifically, vector for translation, 3 vectors for

rotation (1 × 12) and all of their velocities (1 × 12).

4.3.3 Striding

Lastly, both vectors are being aligned by cutting the longer one and ensur-

ing the same length.

In order to provide enough surrounding context for each frame, the audio

data is padded with MFCC frames calculated on silence and then reshaped in

strides.

Figure 4.4: Striding strategy

Figure 4.4 shows the process for a single input example. A chunk of silence

with a given number of frames, say N , is used to calculate MFCCs. Those are

split in half and prepended and appended to the original MFCC vector, in essence

adding silence at the beginning and end of the audio snippet. For each frame in

the original signal, a context window with length N + 1 is taken (the frame + two

surrounding N/2 chunks).
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4.4 Denoising Autoencoder

This section will describe the technical details for the Representation Learn-

ing step using the Denoising Autoencoder as applied to this project’s specific

dataset (a visual overview is seen in Figure 4.5).

Figure 4.5: Headpose motion Autoencoder

Several pre-processing steps were described earlier in order to prepare the

data to be fed to the Autoencoder. There are additional augmentation steps that

can be performed to facilitate the process of learning the reconstruction of the

input. Initially, each group (training, validation, and testing) is centred around

the mean of the whole group

X′(n)
train = X(n)

train − X̄train (4.11)

X′(n)
validate = X(n)

validate − X̄validate (4.12)

X′(n)
test = X(n)

test − X̄test (4.13)

Then each group is normalised in the range of -1 to 1 by dividing the whole

group by the maximum value in each.

By design the Denoising Autoencoder corrupts the input data, in this case

with Gaussian Noise.
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x̂|x ∼ N (x, σ2, I) (4.14)

The DAE learns to reconstruct the input head pose data as closely as

possible by minimising the mean squared error (MSE) loss function

MSE(m, m̂) = ||m̂ − m||22 (4.15)

Finally, the system is ready to learn. Chapter 5 will describe the specific

parameters and quantitative results of the training phase.

4.5 SpeechToDecoded network

After the DAE is trained, the whole dataset is encoded and the encodings

are stored. The next task is to learn the mapping between the input speech data

and the compact embedding of the head pose that the decoded data represents.

The network uses the Adam [50] optimiser, a widely-used stochastic gradi-

ent decent method that is based on adaptive estimation of the first and second-

order movements. Each layer hidden layer uses the Rectified Linear Unit (ReLU)

[51] activation function (Figure 4.7). Lastly, a Dropout layer is applied after each

activation. The Dropout technique [52] is a widely used regularisation technique to

prevent the network to overfit, by simply randomly turning off a specified number

of nodes in the graph.
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4.6 Temporal smoothing

The final results will be described in Chapter 5, however a common problem

is temporal inconsistencies and jerking motion that tends to look unnatural. This

has been a consistent problem with this approach in the papers and results of

Kucherenko et al. [12], [10] and Hasegawa et al. [13]. In fact, in this project

exacerbates the problem with employing a much noisier data set than the original

work. Even though having to post-process the data after the neural network

is generally a sign that the architecture is not optimal and a better end-to-end

learning task is possible, a simple temporal filter can be applied to improve visual

aspect of the results. Both filtered and unfiltered results are presented Chapter 5.

4.7 Rendering

The rendering is done using PyRender, an OpenGL-based rendering 3D

rendering library for Python. A crucial difference between OpenCV and OpenGL

is their coordinate system conventions, namely the y and z axis are flipped so in

order to visualise the results correctly, this transformation was done (see Figure

4.8).

4.8 Conclusion

Once both networks are trained, it is possible to use the network to predict

head pose motion on new, unseen by the model, speech audio. To achieve this,

the audio example has to be processed using the same pipeline as the training
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data. Then, it can be passed to the SpeechToDecoded network, which will yield

predictions in the embedded space of the HeadPoseDecoder network. Finally, that

decoder is used to bring the predictions in the desired space, namely per-frame 3D

positions and rotations. The network also produces the velocities it was trained

on, however those can be discarded.

The following chapter will present both the quantitative and qualitative

results of this process.
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Figure 4.6: SpeechToDecoded
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Figure 4.7: The ReLU activation function [51]

Figure 4.8: Coordinate system change
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Chapter 5

Evaluation

5.1 Pre-processing

The audio was processed into strides with a window of 60, meaning the

length was 60 + 1, given the original frame in the middle. The input stereo

audio is transformed into mono using a simple average of the two channels. Table

5.1 summarises the split and length of the dataset which was pre-processed and

trained on. The original sample-rate of the audio files is 48,000 Hz, at 16 bits per

sample. The hop length of the MFCC is 0.01 seconds, meaning 100 times a second,

or at 100 FPS. An average is applied merging every 5 frames and dropping the

FPS to 20. The analysis window size is 0.02 seconds. The number of filters in the

filterbank is set to 26, the FFT size is 512. After processing, the first 26 cepstrum

coefficients are taken.

46



Table 5.1: Dataset details

videos minutes frames

training 38 33:44 40438

validation 4 6:33 3432

testing 3 2:51 7871

5.2 Head Pose Embedding

The Denoising Autoencoder architecture was trained on the custom head

pose dataset. That means the input and the output of the Autoencoder correspond

to the shape of the data—namely layers with 24 width. The Adam optimiser was

configured with:

• learning rate: 0.0001

• 1st momentum exponential decay: 0.9

• 2nd momentum exponential decay: 0.999

The network converges around 80 epochs (Figure 5.1). In the first experi-

ment, the embedding dimension is the same as the input dimension.

A crucial trade off was observed when running tests on the Autoencoder.

Namely, while the input was being successfully compress, denoised and decoded

back, some of the expressivity, such as sharp movements and rotations, were being

lost. Three examples of the reconstruction performance are shown, Figures 5.2,

5.3, 5.4.
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Figure 5.1: Convergence of the Motion-Encoder network

A frame-per-frame comparison (Figure 5.5) can be seen in the provided

link.

5.3 Speech-To-Encoded

The architecture for the Speech-To-Encoded network was shown in Figure

4.6. The Adam optimiser was configured with:

• learning rate: 0.001

• 1st momentum exponential decay: 0.9

• 2nd momentum exponential decay: 0.999 Dropout is applied at every layer
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Figure 5.2: Quantative comparison between the original head pose data and the decoded signal from
the Autoencoder for test example 41.

with a 10% chances for the neurons to turn off.

The SpeechToEncoded network converges around 100 epochs (Figure 5.6).

Three different test examples are be shown below (Figures 5.10, 5.11, 5.12),

both filtered and unfiltered. While the network has not seen test data (i.e. data

the network has not trained on) the voice is from a common source actor (the

Obama weekly addresses). Further, the examples are the same as the ones used

to test the reconstruction performance of the HeadPoseDecoder network, so it is

useful to compare.

49



Figure 5.3: Quantative comparison between the original head pose data and the decoded signal from
the Autoencoder for test example 43.

The final visualisations were combined with the model of Cudeiro et al. [16]

to generate lip motion on the 3D face mesh from the same input speech audio that

generated the the head pose. For full videos, please visit the online project page.1

Finally, a few arbitrary visual examples are shown that compare the results

with the groundtruth data qualitatively (Figures 5.13, 5.14 and 5.15).
1http://nick-nikolov.com/masters-project
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Figure 5.4: Quantative comparison between the original head pose data and the decoded signal from
the Autoencoder for test example 45.

5.4 Discussion

As seen in Figures 5.13, 5.14 and 5.15, the network clearly learns some

realistic and useful aspects of the source actor’s head behaviour whilst speaking. In

fact, it successfully captures the overall behaviour and range of motion. However,

one major weakness is the tendency to slow down, avoid sharp, quick, expressive

gestures. The reason for this can be one hand rooted in a poor of choice of

parameters or architecture, or on the other an insufficiently strong relationship

between the speech signal and the gesture. The obvious focus of the system here
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Figure 5.5: Frame-per-frame comparison of arbitrary frames of original data and the reconstructed
version by the Autoencoder. On the right, the original tends to be more expressive than the decoded
(denoised) version on the left.

is the acoustic aspect of speech, leaving the obvious question of what the meaning

of the content contributes to the motion of the actor unanswered.

Fundamentally, it is unclear if there is sufficient correlation between the

speech signal and the head pose. One can imagine different phrases with a similar

acoustic character that result in different gestural movements, even for the same

person. Further, some gestures tend to persist over larger windows of time than

this architecture is based on, then quickly changing as the meaning of the contents

of the speech changes, which is a type of behaviour that will be difficult to capture

with this type of system.

The outlined problems are all inherently solvable by attaining more data
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Figure 5.6: SpeechToEncoded convergence.

and improving on the architecture of the learning task. Chapter 6 will expand on

some of the possible avenues of research on this topic.
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Figure 5.7: Quantitive comparison between the original head pose data and the decoded and unfil-
tered prediction from test example 41.

Figure 5.8: Quantitive comparison between the original head pose data and the decoded and unfil-
tered prediction from test example 43.
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Figure 5.9: Quantitive comparison between the original head pose data and the decoded and unfil-
tered prediction from test example 45.

Figure 5.10: Quantitive comparison between the original head pose data and the decoded and filtered
prediction from test example 41.
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Figure 5.11: Quantitive comparison between the original head pose data and the decoded and filtered
prediction from test example 43.

Figure 5.12: Quantitive comparison between the original head pose data and the decoded and filtered
prediction from test example 45.
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Figure 5.13: Example 41: Frame-by-frame comparison of SpeechToEncoded prediction (right) and
groundtruth data (left).
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Figure 5.14: Example 43: Frame-by-frame comparison of SpeechToEncoded prediction (right) and
groundtruth data (left).
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Figure 5.15: Example 45: Frame-by-frame comparison of SpeechToEncoded prediction (right) and
groundtruth data (left).
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Chapter 6

Conclusion and Future Work

This thesis has provided a theoretical background and experimental results

as to the possibility of mapping a speech signal to deterministically determine the

head pose, made up of a translation and rotation component, of a single speak-

ing person. A data-driven machine-learning approach was leveraged and success-

fully shown that this process can be automated. Further, instead of using hard

to acquire, studio-quality motion capture datasets, online footage was collected,

analysed and pre-processed to be made applicable for the task.

Still, many constraints were imposed in order to achieve these results. The

dataset contains only a single person, meaning the speaking style and movement

that the system generates will inherently mimic the style of the source actor in the

dataset. The environmental setting was formal (a weekly presidential addressing)

and facial analysis was made easier by the fact the source person’s head was

looking into the camera for the whole duration of the speech. Audio quality was

consistent, and each utterance was loud and clear. The same applies to lighting

conditions and camera movement. Clearly, these are close to ideal factors that
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will not apply for most “in the wild” footage. Still, it is the case that the proposed

techniques can be indeed extended for many types of similar footage and different

actors, producing models for different contexts and styles, or perhaps growing the

existing dataset and generalising the model for multiple persons.

One of the main limitations of the proposed system in this thesis is the

deterministic nature of the data generation process. A natural extension would

to be look for ways to model the latent space probabilistically, opening up many

creative possibilities. In a very recent paper, Alexanderson et al. [11] address this

problem and propose a probabilistic system with impressive results.

In learning lip movements, Cudeiro et al. [16] leverage a pre-trained Deep

Learning that has learned speech feature. This is an interesting alternative to the

MFCC-based one proposed in this paper and a potential direction for improve-

ment.

Another obvious line of work is improving the performance of such a system.

The history of Computer Graphics is a history of non-real-time systems becoming

real-time so it is only natural to expect Deep Learning synthesis to follow suit.

One can imagine the desirability of real-time performance in tasks such as mobile

communications, online presentations and so on. Further, creative controls of

motion using an interface in real-time would be much preferable to artists over the

tedious cycle of waiting for a render to finish, changing parameters and rerunning

the process from scratch.

In terms of rendering, the literature has shown the flexibility and impressive

realism that GANs can achieve. In that sense, the pipeline of this project can be

extended and be fed to another GAN rendering system, similar to what Yi et

al. [15] propose.
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While the literature is mostly focused on the more obvious body movements,

such as the gesturing of the hands, lip motion or, what this project focused on,

head pose, there are other interesting non-verbal communication cues that can be

explored. For example, mapping gaze direction or eyebrow movement to speech

will further increase the realism of generative systems. With the sophistication

and complexity of the generated data, rendering will too become a more difficult

task.

Lastly, with the advent of voice-based personal assistants it will be desirable

to test and extend motion synthesis systems to work well with synthetic voices.

Indeed, while it would be a more natural engineering approach to synthesise the

motion directly from the system that has generated the voice, it is plausible that

using the audio speech as the source of the motion would increase realism and

naturalness.
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